Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras

نویسندگان

چکیده

Given a sequence d→=(d1,…,dk) of natural numbers, we consider the Lie subalgebra h gl(d,F), where d=d1+⋯+dk and F is field characteristic 0, generated by two block upper triangular matrices D E partitioned according to d→, study problem computing nilpotency degree m nilradical n h. We obtain complete answer when belong certain family that arises naturally attempting classify indecomposable modules solvable algebras. Our determination depends in an essential manner on symmetry with respect outer automorphism sl(d). The proof solely this long delicate. As direct application our investigations give full classification all uniserial extension free ℓ-step nilpotent algebra generators algebraically closed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

Solvable Lie algebras with $N(R_n,m,r)$ nilradical

In this paper, we classify the indecomposable non-nilpotent solvable Lie algebras with $N(R_n,m,r)$ nilradical,by using the derivation algebra and the automorphism group of $N(R_n,m,r)$.We also prove that these solvable Lie algebras are complete and unique, up to isomorphism.

متن کامل

A Bound for the Nilpotency Class of a Lie Algebra

In the present paper, we prove that if L is a nilpotent Lie algebra whose proper subalge- bras are all nilpotent of class at most n, then the class of L is at most bnd=(d 1)c, where b c denotes the integral part and d is the minimal number of generators of L.

متن کامل

Lie algebras with a free nilradical

We classify solvable Lie groups with a free nilradical admitting an Einstein left-invariant metric. Any such group is essentially determined by the nilradical of its Lie algebra, which is then called an Einstein nilradical. We show that among the free Lie algebras, there are very few Einstein nilradicals. Except for the one-step (abelian) and the two-step ones, there are only six (here f(m, p) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2021

ISSN: ['1090-266X', '0021-8693']

DOI: https://doi.org/10.1016/j.jalgebra.2021.06.008